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Abstract

q’his paper presents a systematic method to design roljust colitrollem from experimental data
so as to ensure that the cont,rollcr  is robust with J espect to all plants which cannot be discounted
based on the data (to within a specified statistical confidence). l’hc present paper extends previous
multi variable results to the structured uncertainty case and denionstrates  the benefit to control
synthesis of estimating uncertainty bounds in structured form.

1 INTRODUCTION

]n recent years, control analysis and synthesis methc)ds  havt been developed which ensure controller
performance and robustness with respect to norm-hounded pertu~batiolls  in the plant description.
}“or linear time-invariant (1,’I’1)  plants, such perturbations J cpresent  the designers lack of knowledge
about the true plant  model. For linear time-varying (I, TV) plants such perturbations must also
capture temporal variation in the plant dynamics.

IT] the case of 1,7’1 plants, uncertainties can bc substantially reduced using experimental data
and system identification methods. This has led researchers to dcvclc)p  iclmltification  methods which
directly support robust control design. Such methods involve the cstinlation  of a “plant set” rather
than a point estimate, and must produce uncertai][ty  bou]lds  in a for]n which can be incorporated
into robust control formulations.

Various methods of plant set estimation have been given in the literature. The various ap-
proaches can be roughly divided depending upon whethe] they use tim(~-domain  estimation as in
Kosut  [20], Younce and Rhors [26], Goodwin and Salgado [18], or frequency domain estimation
as in 1 ,amaire  et. al. [21], Parker and ]Iitmead  [22], Bayard  [4], or 1 )C Vries and Van dcn Hof
[11][1 2]. Methods within each category generally differ based on the types of inputs allowed (e.g.,
second-order stationary, white noise, periodic, persistent (excitation, ctc, ), the types of quantities
being estimated (e.g., plant dynamics, noise PSD’S, unrnodelled dynalnics),  model parametrization
(e.g., pole-zero models, FIR models, etc.), assumptions on the noise (e.g., bounded noise, bounded
noise I)F2’, Gaussian noise, etc.), and the type of a-priori information required (i.e., smoothness
priors, open-loop damping, model order, relative degree, etc.).
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Related approaches which give hard bounds on the idm(tified  mode] crrcn can also be found in
Helm icki,  Jacobson and Nett [19] and Gu and Khargonekii r [16]. IIowevm-, these methods are not
directly comparable since they start by assuming that flequcmcy data is available in a specific form
(i.e., with hard error  bounds).

The plant set estimation method used in this paper has its roots in the approaches of Bayard
[4] and de Vries and Van den Hof [12], which utilize periodic and nlultisinusoidal  input excitation
in combination with frequency domain identification techniques. ‘J1he particular plant set estima-
tion method used in this paper was developed in Hayard [5], and represents an extension of the
multivariab]e  results in [7] to the “structured uncertainty” case. Structure  JIF; may IN useful for re-
ducing conservatism in practical multivariable  prclblems,  ]Jarticularly if there  are variations in the
signal-to-noise properties between different channels. Such variations arise from differences in plant
dynamics, excitation methods, data length constraints, actuator power constraints, noise coloring
characteristics, etc., and should be expected in most M1hf  O applications.

Using multivariable  structured plant set estimation, this paper a.dvallces  a method to design
robust controllers from experimental data so as to ensure that the controller is robust with respect  to
all plants which cannot be discounted based on the data (to within a specified statistical confidence).
A special case of this unified estimation and control appl each has beml demonstrated earlier for
single-input/single systems in [6], and for nndtivariable  systems with unstructured uncertainty in
[9]. The present paper extends these results to tile multivariablc  structured  uncertainty case; and
demonstrates the benefits to control synthesis of estimatirlg  uncertainty bounds in structured form.

Section 2 provides a formulation of the problem and outlines basic analytical assumptions.
%ction  3 and Section 4 respectively present analysis fo~ nonpara~net,r  ic and parametric charac-
terizations of the structured uncertainty. Sectio]l 5 provides an incorpc)ration of the uncertainty
characterization into robust control design as illustrated by the two-car problem analyzed in Section
6. Final  conclusions are given in Section 7.

2 PROBLEM FORMULATION

2 . 1  13 ACKGROUN13

Consider the discrete-time multivariable  system with output noise, ~ivcn Ly,

Y(T) = p(Z-l)U(T)  ‘1 V(T) (1)

where  ?’(z–  1) is the n“-input,  r ig-output  multiwtriable  I1g’I  plant,  v E 7tn Y is an output vector
disturbance, and T = 1,2,,., denotes the discrete time index. It is clcsired to identify this system
in the following form,

T(z-])  = l’”(z-~  )-} A~(z-’) (2)

where l) O(-Z-l ) is a nominal estimate of the true plant ?)(z-l), ancl AA(z - 1, is the additive uncer-
tainty defined as AA = T --1’0. Since the true plant is not known, it is desired to represent the
additive uncertainty in the form

AA : W~gAW~l (3)

such that A is a structured norm-bounded perturbation (to be described in more detail later),
and W A1 and WAZ are stable rational transfer functioli matrices. ‘1’he  weighings WA~ and WA~
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arc then typically incorporated into the control design, to ensulc robustness properties over the

additive uncertainty set.

~’his paper presents a method for identifying a nominal plant estimate 1’0, and weighting filters
W A], W.4Z, from experimental data, such that the relation P =- P“ -1 lt’AzAWAl  holds (for some
structured \ 1A I [m < 1 ) to a specified statistical confidence 1 – a specified by the designer. These
quantities are then used to directly synthesize a robust  controller C usiilg standard packages such
as Ilalas  et. al. [2], and Chiang  and Safonov [1 O]) such that the closed-loop system has desirable
stability and performance properties for all plants in the u llcertainty  set,

The rationale is that if C can ensure some level of pcI formance for all plants in this additive
uncertainty set, then the controller will work as designed when implen~erlted on the real plant with
probability 1 – a. This approach eflects a marriap;e  betwern  the hard uncertainty bounds used in
modern Hm robust control designs, and the soft bounds olltainable  usin~, statistical methods.

2 . 2  A S S U M P T I O N S  O N  A - P R I O R I  I N F O R M A T I O N

l’he  estimation of a plant set requires the specification of certain a-priori ilLformation.  l’he  assump-
tions are given explicitly in this section.

Let” 5(X) denote the maximum singular value of a matrix X. ~’hc following definition will be
needed.

DEFINITION 1 A MIMO linear time-invariant (1~11) system with transfer function G(z-l ) is
said to be in D(M, p) if the impulse response matrix sequence {g(~2’)}~.0 defined by the Z-transform
relation ~~=0  g(~T)z-~ = G(z-l) satisfies,

@J(T~’))  < J’d~’

forson~c  ~> M> Oandl>pzO.

Simply stated, D(M, p) is comprised of all L!J’I  systenls whose impulse
nentially.  The main usefulness of Definition 1 is due to the next lemnla.

(4)

response decays expo-

LEMMA 1 Let G(z-l) ~ D(M, p). Then the derivative of G on the unit circle can be uniformly
bounded from above as follows,

(5)

PROOF: see Bayard  ct. al. [8]. ■

The bound in Lemma 1 insures a certain smoothness i u G and allows one to overbound  errors
incurred interpolating in-between grid points.

ASSUMPTION 1 The true plant P(z-l) is a stable unknow]l linca I time-invariant (1,1’1) nU-
input .ny-output  multivariable  transfer function assumed to be in D(.M, p), where M and p are
assumed known. ●

The  experiment design is now briefly described. Consider the periodic. input  excitation design
into the nlth input, composed of a harmonically related sum of sinusoids,

3



.

where T is the sampling period, wk =: 2irk/T~, 7; = N,?’,  ?L3 < N,/2 - 1. IPor eflcient  colnputation
using a Fast  l’ourier Transform (l’I’l’)  the total number of fl equency grjd points N, should be chosen
as a power of 2.

The power is assumed to be normalized as,

~“b) “ 1
k=l

where the relative power in each component {a~(nl  ) > 0, k = 1 , . ..n. } is assumed specified.
order to minimize peaking in time domain the sinusoids arc phased accodillg  to Schroeder [25]

(7)

In
as,

(8)

(Here, a slightly modified form of the Schroeder phase is used in (8), as derived in Young and
Patton [27]). ,More recent expressions which use the Schroeder desi~n as a starting point for
further reducing the crest factor of the multisinusoid  signal (6) can also be used (Guillaume  et. al.
[1 7]). The Schroeder phasing (8) is useful for implementations which lnust  lnake the most eficient
use of input power subject to actuator saturation constrailits.  Howmwr, the actual choice of phase
does not effect the analysis or change any of the nlain results herein.

A S S U M P T I O N  2 IIata for the multivariable  case is assumed to be taken by performing 71U

separate single-input multiple-output (SIMO) experiments , using a rnultisjnusoida] excitation of
the form (6) with the full number of sinusoids n, :-: iV, /2 - 1 for each experiment. ■

ASSUMPTION 3 The output disturbance v(~) < 7Z”M cdn be represented by v(~) = W(z-l)cl(~)
where d(~) E %?n V is a white zero.mean  Gaussia]~  vector noise sequence normalized such that
lI[d(i)#(j)]  = 6ij o 1; W(-z-])  is a diagonal matrix of filters

W(z-1) = Diag{w(z-’>  l),..., w(,nv)}v)} (9)

where IV(z- 1 , n,) is a minimum phase (stable and stably in~’ertible) transfer function, n, = 1,..., n,.
■

A S S U M P T I O N
steady-state.

A S S U M P T I O N
the time constants

4 Data from each SIMO experiment is taken while the system is in periodic

5 The input period N,7’ of the multisi nusoidal  design (6) is long compared to
of noise filter W and its inverse W.--1.

In this formulation, the designer has the freedonl to chcjose  the freclucncy  shaping {ak (nl)
the number of periods of data collected m(nl ) in each SIM O experiment.

m
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3 NONPARAMETRIC STRUCTURED UN CI’;RTAINTY

3 . 1  S T R U C T U R E D  U N C E R T A I N T Y  I] ESCJUPTJON

An additive error A~(x-l) is used to characterize the mismatch between the true plant T(z-l) and
a nominal plant estimate PO(z-l),  i.e.,

A~(z-l) := P(z-’) -- P “ ( z-’ ) (lo)

It is desired to consider the structure of AA in more detail. The followirlg  definition will be useful.

DEFINITION 2 A partition of a matrix G <1<”’””” is defined as any set of integers,

x = {p, q;ql,... >vp; ul)vq})vq} (11)

such that ~~=1 qi = ny and ~~=1 vi = n.. From the set of integers in A’, and the matrix G, one
can uniquely define the set of partitioned blocks,

K(A’l G)~ {[ G’]ij  G 72’llx”j  i =: 1,...,  P, j c 1,...,9} (12)

by using the construction shown in I+igure  1. Specifically, the matrix G is partitioned vertically
and horizontally into p and g segments, respectively, where the ith  vertical segment is qi rows tall,
and the jth horizontal segment is vj columns wide. Finally, an indcz set Kij(X) is defined which
contains indices of all elements in the ijth block of a partjtion  X, i.e.,

~ij(A’) = {(?lz,  nl) : G.,.l is an element of block [G]ij < K(X, G)}

nu
~—

‘ v. v ’.*. “q/2 /+
[q, ● ● “ [Gl,q

..
. ..

. .:

[G]pi”” ● [ G ]p q 1

Figure  1: Construction of Partition A’ = {p, q; ql, . . . . T~l); ~1, . . . . ~q}.

EXAMPLE 1 Consider the matrix G : ‘R3X4,

Define the partition X = {2, 2; 2, I; 2, 2}. ‘1’hen  the partitioned blocks [G]ij c K(X, G’
spending index sets are given below,

(13)

m

(14)

and corre-

‘G]ll ‘[:: M; l$~~(x)  = {(1,1),(1,2),(2,1),(2,2)}
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[G],, =
G13 G14
G23 G24 1

;  K12(X) ={(1.3),( 1,4), (2,3), [2,4)}

GN Gin]; KZI(X) ❑ ={(31)>(  30)} “

[a2 1 ] “  %(W “{(33 ),(3>4)}= G 3 3 G34 ,

m

Partitioning is useful because it can be used to structure the additive uncertainty. Given a
partition A’, one can define the plant blocks [P]lj ~ K(A’, 7’) and IIolnillal  estimate blocks [I’”]ij  ~
K(X, P“).  Assume that a stable real rational filter ~ij(~- ‘ ) is known w})ich overbounds the error
in the ijth block, i.e.,

lWij (C -@~’)1 > a ([’P] ij(e-”J’”T) - [P”]ij(e ‘~ti’’”)) for all h) C [0, 7r/T] (15) ,

Then one can write the additive error

AA =

n structured form as,

[:

Allwll  . . . A~~w~q
“.

1 APIWPI  . . . Amww

for some set of norm bounded complex perturbations

A ij ~ C~lxvj; ti(Aij(ti))  < 1; for all w & [0, n/T]

Equivalently, one has,
AA = W~2AWAl

where,

[
wll”Iql . . . W]q”lnl o . . . 0 . . . 0 1

( 1 6 )

(17)

(18)

0 0 .””.:“.
, . .

“. “.. . 0 . . . ()

o . . . 0 . . . 0 WP1 . lqp . . . Uj,q “ Iqp J

(20)

A = diag[All,  . . .. A1~.. . . . . . ., AP1,. . ., APq] { R(g’ny)x(f’”nu) (21)

where the notation -In is used to denote the identity matrix of size n x ?1. ‘J’he error A in (18)(17) has
the structure (21 ) which can be used with modern structured singular value analysis and p-synthesis
methods.
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3 . 2  M I M O  P L A N T  S E T  E S T I M A T I O N

The  goal of this section is to determine the uncertainty ill structured form (16)(18) using experi-
mental  data. l’his is equivalent to a plant set estimation ~Jroblenl, where the plant set is required
to have a specific structure. The following definition introduces the notion of structured plant sets.

DEFINITION 3 A structured additive uncertainty s< t is defined as the set of plants P E
Q~(Po, X, LA) which is consistent with a partitioning X, a specified ]Iolninid  1’0, and uncertainty
bounds LA = {.f?ij(~),  i = 1,..., p, j = 1,..., g}, e.,.,

f2~(P0,2’, tA) =

({P : 5 P~j  – P; ) < tij(~), for all k) 6 [0, T/T’],  [f’]ij  E K(A’,  l’),  [PO]ij E K(X,  P”)}  ( 2 2 )

■

Simply stated, a candidate plant P(z-l) is in the plant set Q~(PO, X, LA) if and only if it can
be represented as,

[P]’,,(w) . . . [q,,(u)
“, ‘1 =

[P]P;(LJ ) . . . [P]p; (LJ)

[P”],,(u) . . . [F’],,(u)‘][ A1l(LJj&l(LJ)  . . . A1q(w)tl*(bJ)
,: “. +; “.

[r”];,(u)  . . :  [PO];,(U) API (W)lPI(LLJ) . . . Apq(~)~Pq(o)

(23)

for some set of norm bounded perturbations 5 (Aij(ti)) <1, and for all w c [0, ~/T].

The  motivation for this definition is: if the true plant  is known to lie in the set ~A(~’O, X, ~,4),
and if each scalar function lij(ti)  is overboundcd  by a rational function Wij  (z-l) of specified order,
i.e.,

[’Wij(f? ‘i’’’T)[  ~ lij(bJ)  for all U ~ (O, m/1’] (24)

then the true plant can be written in the desired structured uncertainty form (16)(18). An algorithm
for systematically finding wij which satisfy (24) can be found in the next section on parametric
structured uncertainty.  .

In Definition 3, the plant set is characterized completely in terms  of the bounds lij(~) contained
in LA, This notion is extended to statistical bounds in the following definition,

DEFINITION 4 The quantity, ~~-”” = {~ij(~),  i := 1,... ,P ~ z 1, . . ..q} is said to be a structured
bound on the additive uncertainty with statistical conjidcnce (1 - CY) x 100% with structure X if,

The  significance of thk definition is that t~-  0 characterizes (to statistical confidence (1 – a) x

100%) a set in whjch the true plant P belongs. A statistical plant  set description is useful since it
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can systematically capture variations due to noise in the data. ‘Ilere is little to be lost from such
an approach, since if a robust controller is designed to provide some specified level of performance
for all plants  lying in the adclitive  uncertainty set ~lA(I’O, A’, ~~-~), tlicn with probability 1 – a the
controller will work as planned when appiied to the true system.

A method for calculating the statistical overbound  E~ from noisy experimental is given in the
next result.

T H E O R E M  1

Given discrete-time 1;1’1 plant P(z-l) ~ D(A4, p), assllme that noisy frequency domain data
{~(w,)}~=l are available on a grid on the unit circle O <w, , ...,~N < z /1’, where ?’ is the sampling
period.

Assume that a plant partition X is chosen, and let the accuracy of tllc data [~]ij E K(X, ~) for
the i~th  block be characterized by the quantity ~ij (k) such that the event l~ij(k),

is satisfied with at least probability 1 – K at each grid point w~, and for each block i = 1, . . . p,
j = 1, ..., q. Here, the events Eij(k) may or m~y not be statistically independent for different values
of i, j,k.

Let S([~]ij,  w) be a Jinear spline inierpolant  to the data, i.e.,

and let P“(.z–l)  be any stable parametric model fit to the (lata,  partitioIlcd  compatibly as [F’”]ij E
K(X, P“). Define,

where,

Noise Error

Curve I’it Error

Interpolation Error

~ij(w)  = ~ij(w) + ~ij(w) ‘i ~ij(~) (29)

Cij(W)  = 5 (S([Fij], W)  ‘- [} ’O]ij(W))

(30)

(31)

(32)
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l’hen, L~-O is a structured bound on the additive uncc rtainty  with statistical confidence, (1 –
a) x IOO$ZO  where,

l–a=

(] -  @Mq if events E~j (k) are jointly independent for all i, ~~ k
(1 - Nfi)’q if events Eij(k) are jointly independent for all i,j
(1 - q&)””p if events .Eij (k) are jointly independent for all i, k
(] -~K)Nq if events Eij(k) are jointly independent for all ~, k
(1 – qNK)P if events Eij(k) are jointly  independent fOr all i

(33)

(1 - pN~)q  if events EiJ (k) are jointly  independent fc)r all j’
(1 - pgK)~ if events Eij(k) are jointly independent for all k

(1 – pqN~) otherwise

i.e., with the choice of _C~-O in (28)(29) it follows that,

f’7-ob{P E f2~(F’0, A’, Lj-’”)} >1 – a (34)

PROOF: ‘1’he proof can be found in Bayard  [5].

REMARK 1: The various options for computing 1-- Q in (33) of l’heorem  1 can be very useful
in practice. For example,

RI If data is taken in separate SIMO experiments, the noise entering each experiment will be
statistically indepelident.  Hence, the errors in each column  of the estilnated  transfer function
matrix will be statistically independent, and for any partition of the plant one can use the
relation (1 – a) = (1 – pN~)q.  Furthermore, by suitable chc)ice of partition, this approach
can be extended to the case where data is taken in separate Ml MO experiments, each using
a different disjoint subset of the available actuators.

R2 If the noise is known beforehand to be statistically i]ldependent  from one sensor to the next
(due to spatial remoteness, geometric considerations, orthogonal lrlountings, etc.), the errors
in the rows of the estimated transfer function matrix will be statistically independent. Hence,
for any partition of the plant one can use the relation (1 - o) = (1 -- gN~)P. lly judicious
choice of partition, this approach can be extended to the case where the noise is known to be
independent between disjoint subsets of sensors.

R3 It is often the case (either exactly, or asymptotically), that errors incurred using frequency
domain estimation techniques are statistically independent froln one frequency to the next.
In this case, one can use the relation (1 -- a) = (1 – pq~)~.

R4 If the above 3 situations (i.e., RI ,It2,1t3) am valid simultaneously, one can use the relation
(1 – a) = (1 – ~)~pg. Alternatively, the above cases can be combined 2-at-a-time to make use
of the remaining relations (33), i.e., cases (R1 ,R2) imply that (1 a) = (1 – N~)P9; cases
(R2,R3)  imply that (1 - a)= (1 - q~)Np; and cases (R1,R3)  im~dy  that (1 - a) = (1 -pic)N’.

R5 As a separate issue from statistical independence, it is often useful to define partitions which
separate the transfer function into blocks having similar error magnitudes. With this ap-
proach, if the errors in a particular channel or subset of channels is much larger than the
other channels, the remaining channels will not be unduly penalized in the robustness anal-
ysis. A similar argument can be made if the errors in any particular channel or subset of
channels are much smaller than the other channels. Partitioning based on error magnitudes
can be done with or without consideration of statistical independence between channels, by
using the ]nore general  expressions for 1 – a given ill (33).
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As desired, L~-e in Theorem 1 is a function only of the experil]~entaJ  plant data set x =
{M, P, {~(~~),  ~ij(~)}ij~}. values  for M and p will be assu,ned  known a-priori (they  may be known
from the physics of the process, or found by impulse or step response experiments). Systematic
methods for finding {}(w~),  ~ij(k)}ij~  with the desired prollerties  in q’heorenl  1 under Assumptions
1-5, are given in Bayard  [5].

4 PARAMETRIC STRUCTURED UNCERTA 1 NTY

4 . 1  U N C E R T A I N T Y  C H A R A C T E R I Z A T I O N

‘I’his section presents an algorithm which solves the system posed by (24). ‘l’hat  is, given the scalar
function lij(~), one wishes to determine a rational functi(m ~ij(~-  ] ) of specified order to satisfy
the inequality

To accomplish this goal, a nonlinear constrained optimization is posed to compute a minimum-
phase transfer function ~ij(~-l ) of order m such that [~ij  (e-jW~)l  is a tight overbound on fij(~)
for all W. Forming the quantity ~~ij(~)~ij(~-  1) and evaluating On the unit circle gives an expression
of the form,

‘)ij(dwT)wij(e-j”T  —) ~ gl-J (36)

where,
(37)@(LIJ) = @y + ppcos(w7’)  + . ..+ p:cos(?72uT’)

a(f.lJ) = 1 + Crlcos(wq  + . . . + C)”, COS(?WT) (38)

It is noted that a(w) is defined as rnonic without loss of generality (i.e., QO = 1 ) . Here the
indices i, ~ range over va~ues  determined by the partititm  defined by l)cfinition  2. Thus, the
complete parametric overbound is determined by the coefficients a~, ~~ for i = ] , . . . . p, ~ = 1, . .. )97
k== ],.,., In, Note that specifying cr(w) to be a colnmon
reduces the overall order of the parameterization.

Constraints  for  Overbounding

The requirement that lzoij(e-j~’q’)l  be an overbound
that [~ij 12 is an overbound on l~j and can be expressed

denominator (i,e ., independent of i and ~)

0]1 lij (w) is equivalent to the requirement
as,

Conditions for Tight Overbounding

The  requirement that lt~ij  12 be a “tight” overbound  can be expressed as,

(39)

mim 6
0(w), p’~(w)
16{1, . . ..P}. j e {1, . . .. ’7}

(40)
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where,

Here, the criterion minimizes a worst-case error  6, which is frequency

(41)

weighted by the non-negative
quantity gtjl  (w). Note that the optimization hue includes all channels simultaneously in one
minimization problem (i = 1, . . ..p. j’ = 1, . . ..q).

Constraints for Spectral Fac.torizability

The  requirement that the overbound ,Bi~ /o admits a spectral factor u~ij can be satisfied by
ensuring that (Astrom  [1])

~i~(w)/cr(w) >0 for all w E [0,7r/L”] (42)

cl(w) >0 for all LLJ E [o,7r/T] (43)

Note that condition (42) is implied by (39), and condition (43) calt be enforced explicitly by
the constraint,

Q’(LIJ)>Q>O (44)

for some small Q. For technical reasons, it will be convenient to enforce a similar constraint on ~i~
as

pij(w)  2? p >0 (45)

for some small @-.

In summary, it is desired to solve the optimization problem (40) (41) for a(w), ~i~(w) subject
to constraints (39), (42) and (43).

4 .2  So lu t ion  on  a  F in i t e  Gr id

l’he  constrained optimization problem

subject to

restricted to points of the set A can be written as,

m i n . 6
ak,~:

i E {1, . . ..p}

J  6 {1,...,9}

k E {O, . .,?n}

(46)

fOT all i,j,w”, (i= 1,..., p;j= 1,...,  q;v= 1,...,72) (50)

where a(w) and ~ij(w) are defined by (37) (38). A key obserwtion, nlade in [24], is that for fixed

8 the optimization over a~, Bg is simply  a hnea~ ~)rogr~’mming problem to find a @si~~~ SOIUtiOTl
for the coefhcients  ~k P!. Hence, the joint optimizatio]l  problem can be solved by a nested search
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procedure where an outer-loop systematically decreases d while an inner-lc)op  finds feasible solutions
in the variables cr~ and ~~ for fixed 6. The procedure terminates when the smallest y is found
which admits a feasible solution. This approach is denoted as the L1’-Spectral  Overbounding
and Factorization (LPSOF) Algorithm [24].

To solve the problem (12-13), one must begin with upper and lowwr bounds for the optimal
value 6. For example, one can choose the lower bound fi. = O and let the upper bound 6+ be
derived from some startil!g  feasible suboptimal  solution (an obvious choice is a(w) ~ 1, ,6i~ (w) s

ma,xi,j,wv lfj(~v)). Then d =- (6+ + 6.)/2, becomes an updated value for 6+ or d- depending on
whether or not the inequalities (13) can be satisfied for 6 = ~ (i.e., the bisection method). In this
way the I,PSOF algorithm converges to the optimal valut of 6 geometrically, (i.e., as a power of
1 /2). Further refinements lead to additional speedup and other variations of the algorithm. More
details of this approach can be found in Scheid [24], where the focus was on S1S0 systems.

5 STRUCTURED ROBUST CONTROL SYN’J’HESIS

Robust control methods such as H2, Hm are well known design t echni{:lues,  applicable to systems
having unstrwctzmed (norm-bounded, frequency dependent) uncertainty. ITI contrast, the p-Synthsis
design technique is best suited for systems having M-uctured uncertainty representations. The p-
Synthesis approach achieves less conservative (i.e., higher performance ) robust control designs by
optimizing a robustness criteria based on a p measure, o] equivalently a structured (rather than
unstructured) singular value definition [13].

This section describes the p-Synthesis technique [14], for the purpose of designing a controller
which is robust with respect to the plant set, as identified in structured form using the estimation
and overbounding techniques presented in earlier sections. Mathematically, the goal of p-Synthesis
is to find a stabilizing controller K(s) and a diagonal scaling matrix 1)(s)  such that

Ilm,,u,ll- ‘Ilm <1

where 2’~,Ul is the matrix transfer function defined from the output of t}]e additive uncertainty
block AA to its input, with the controller 1<(s) in the loop (i.e., the transfer function “seen” by
the uncertainty, with the controller active). The diagonal scaling lnatrix  l)(s) is the key to closing
the gap between the singular value (Small-Gain t}~eorem)  and the A’n, function (Canonical Robust
Control Problem) of the cost function. Readers are referred to [10] for detailed background.

An iterative design procedure called the 1)-K, Iteration will bring the solution of the robust
control problcm  close to “optimal” (reducing the gap between singular value and p). The procedure
‘goes as follows:

Step 1: Set D(s) = 1 and use Hm control method to find a controller K(s) which minimizes the
cost function llDTY,U,D-ill@,

Step 2: Fix 1{(s) and compute the Structured  Singular Value and the cost-minimizing diagonal
matrix D(s) (magnitude vs. frequency).

Step 3: Use a curve fitting method to realize a stable al~d minimal phase filter for the diagonal
scaling D(s) over the frequency range of interest,

Step 4: If the structured singular value is close to and less than cme, stop; otherwise go to Step 1,
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6 E X A M P L E

A unified procedure for identification and control synthesis, has been developed in previous sections
based on the 2-step approach of first estimating the plant set in a struct u red uncertainty form, and
then utilizing a p-Synthesis routine to design a robust controller via the 1)-K iteration procedure.
This approach will be applied to a numerical example in this section.

The example consists of two-cars connected with a spring and claloper, as shown in Fig. 2.

1
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l’igure 2: Two Car I)roldem.

A force actuator and position sensor are assumed to b{ collocated 011 each car, giving rise to a
2-input/2-output system. The maximum and minimum singular values of the open loop plant are
shown in Fig. 3.

The objective is to compare a structured approach to plant set estimation using the fully
partitioned plant x, = {2,2; 1,1; 1,1 }), with an unstructured approach using the unpartitioned
plant Xa = {1, 1; 2; 2}. The control approach for the structured case will be p-synthesis, while the
control approach for the unstructured case will be a pure H~ design.

I’ollowing the procedures of Sect. 3 and 4, the plant set is ide]ltified  fo r  the  unpar t i t i oned
plant, and a stable and minimal phase filter Wz is determined to ovcrbound  the unstructured
additive error. A matrix weighting IVl is chosen to specify a desired performance objective. Both
weighings are appropriately used to augmented the open loop plant. With the given performance
weighting WI and the additive weighting W2, no controller could be found. using singular value
mixed-sensitivity H@ synthesis.

Following the procedures of Sect. 3 and 4, the plant set is identified for the fully partitioned plant
(i.e., X, = {2,2; J, 1; 1, l}), and a set of additive uncertainties per each channel is realized by a set of
stable and minimal phase filters (see Fig. 4). ‘l’his set of filters (all with common denominator) are
realized ill matrix form to give a matrix weighting function W2. ‘1’he  salrle performance weighting
matrix WI is used as with the previous unparitiolled  case. q’hc p-Synthesis procedure was applied
to the problem, The results are sulnmarizecl  in Fig. 5. Nc)t only is a robust controller found, but
after two steps of the D-K iteration, the cost functicm SILOWS all obvic)us improvement (the gap
between p and singular values is reduced).

7  CONCLUSIONS

l’his paper demonstrates a method for constructing a structured uncertainty model representation
directly from experimental data, and then utilizing the structured model fol robust control design.
Specifically, this approach produces a nominal plant estimate PO and the additive uncertainty
weighting filters W A1, WAZ, such that the true plant lies ill the adclitivc  uncertainty set P = P“ +

13
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Figure 5: Singular Value and p of the Cost Function.

W A2A WA1 to a prescribed statistical confidence {1 – o) x 100%, where A can be structured as is
appropriate to capture statistical independence and/or sip,nal-to-noise  variations between various
channels of the transfer function matrix. The usefulness of this representation is that any controller
designed to be robust with respect to P“ and weights WA 1, WAZ (clesigyed,  for example with the
software [10][2]), will work on the true system to the same (1 – a) x 100% statistical confidence.
The purpose of structured rather than unstructured bounds  is to ensure tighter bounds on the
estimation error and hence less conservative (i.e., higher performance) robust control designs.
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